Course Specifications : organic Chemistry

University : Benha university

Faculty : Faculty of Engineering

Department Energy

1- Course Data

Course Code :	Course Title :	Study Year:				
EMP 301	2 (level3)					
Specialization: End	ergy					
Teaching Hours:						
Lecture : 2	Tutorial : 2	Practical : 0				

2- Over all aim of Course

The primary goal of this course is to understand organic chemistry and to develop critical thinking skills related to the subject matter. The specific objectives are:

- 2.1 To acquire the student with the essential knowledge to understand the basic principles of organic chemistry which are necessary for engineering students.
- 2.2 To differentiate between organic and inorganic compounds.
- 2.3 To be familiar with the nomenclature, properties and reactions of hydrocarbons and their derivatives.
- 2.4 To learn the different types of hybridization and their related geometries.
- 2.5 To understand the three-dimensional shapes of simple organic molecules and differentiate between its different isomers (structural and stereo), and how those shapes affect reactivity.
- 2.6 To relate the relationship of a molecule's structure with its reactivity
- 2.7 To differentiate between the different types of reactions and evaluate their mechanism.

3- Intended Learning Outcomes of Course (ILOS)

a- Knowledge and Understanding

By the end of this course the students:

a ₁ - To be familiar with the nomenclature, properties and reactions of hydrocarbons and their derivatives.

 a_2 - To understand and differentiate between organic and inorganic compounds.

a₃- To learn about the empirical and molecular formula.

a₄- To differentiate between the different types of hybridization and their related geometries

 a_5 - To differentiate between the different types of reactions and evaluate their mechanism.

 $a_{\rm 6}.$ identify all the isomers associated with simple aliphatic hydrocarbons and predict

b- Intellectual Skills

By the end of this course, the students will be able to:

b₁- To organize the compounds as organic and inorganic.

b2. To calculate the empirical and molecular formula and predict the molecular structure of a chemical organic compound.

b₃- To recognize stereochemistry and be able to apply the Fischer

projection to designation of stereochemistry (R/S and cis/trans)

b₄- To calculate the heat of combustion of an organic compound.

 b_5 . To predict the geometries and structures of carbon-based compounds, the tetravalence of carbon atoms, and the local geometries that result from sp, sp2, and sp3 hybridization.

 b_{6} - To relate the relationship of a molecule's structure with its reactivity

c- Professional and practical Skills

On completing this course, the students are expected to be able to:

 $c_{1\mathchar`-}$ Draw skeletal structures for organic compounds.

 \mathbf{c}_2 . Draw valence bond and Lewis dot structure for organic species, including formal charges.

 c_3 . To construct three-dimensional models of the organic compounds

d- General and practical Skills

by the end of this course, the students will be able to:

d₁- Manage the time effectively

- d₂ Use different resources to get the required knowledge and information.
- d₃- Collaborate effectively within multidisciplinary team.
- d₄- Develop the ethical behaviors between students and staff members as well as among the students themselves.

Ν		No of	Lecture	tutorial
0	Topics	hours		
•				
1	Types of hydrocarbons and their derivatives	8	\checkmark	
	Molecular composition and structure of			
2	organic compounds: determination of	8	\checkmark	\checkmark
	empirical and molecular formula			
3	Types of Hybridization and related geometry	8		
4	Types of stereoisomers: enantiomers and	Q	2	2
4	diastereomers and their properties	0	N	N
5	Types of reactions: elimination –addition –	Q	1	2
5	substitution	0	v	V
	Organic reaction mechanism: bond formation			
6	& fission, classification of reagents and	8	1	2
	reactions, reaction intermediates (carbocation	0	N	N
	- carboanion-free radicals)			

4- Course Contents

5-Teaching and learning method

- 5₁-Lectures
- 5 ₂- tutorial sessions
- 5₃- some part of lecture for discussion and problems solving
- 5₄-writing a report

6- Teaching and Learning Methods of Disables

Non

7-Student Assessment

a-Student Assessment Methods

1	Two Mid-term exams to assess the progress of the students along the mid
1	semester
	Oral discussion and participation in the class room to assess the students
2	progress and personal
	attitude
2	Final exam to assess the ability of understanding ,remembering
3	and assessing

b-Assessment Schedule

No.	Assessment	Week
1	Participation in classes	All
2	Mid-term exam 1	7
3	Mid-term exam 2	11
4	Final exam	As the final exam schedule

C-Weighting of Assessments

Assessment	Weight
Mid-term Examination 1	30 %
Mid-term Examination 2	20 %
Final Term Examination	40 %
Attendance and participation	10 %
Total	100 %

8- List of text book& References

- a-Course note
- b-Text books

1-Morrison and Boyd, organic chemistry 4th edition

Course contents-ILOs Matrix

Content	Total	Hours	K&U (a)	.S(b)	P.S(c)	G.S
	hrs	<i>A</i> ecture				(d)
Types of hydrocarbons and	4	2	$a_{1,}a_{2}$	b ₁	c1	$d_{1}d_{2}$,
their derivatives			,			d_{3}, d_{4}
Molecular composition and	4	2	a ₃	b ₂		$d_{1,}d_{2,}$
structure of organic						d_{3}, d_{4}
compounds: determination of						
empirical and molecular						
formula						
Types of Hybridization and	٨	٤	a ₄	b ₅	c_1, c_2	$d_{1,}d_{2,}$
related geometry						d_{3}, d_{4}
Types of stereoisomers:	٨	٤	a ₆	$b_{1,}b_{2,}$	c ₃	$d_{1,}d_{2,}$
enantiomers and				b ₃		d_{3}, d_{4}
diastereomers and their						
properties						
Types of reactions:	٨	٤	a ₅ ,	b ₆		$d_{1,}d_{2},$
elimination –addition –						$d_{3}, d_{4},$
substitution						d
Organic reaction mechanism:	٨	٤	a ₅	b ₆		$d_{1,}d_{2,}$
bond formation & fission,						$d_{3}, d_{4},$
classification of reagents and						d ₅
reactions, reaction						
intermediates (carbocation -						
carboanion-free radicals)						

Learning Method / ILO Matrix

Learning	a ₁	a ₂	a ₃	a ₄	a ₅	a ₆	b ₁	b ₂	b ₃	b ₄	b ₅	b ₆	c ₁	c ₂	c ₃	d ₁	d ₂	d ₃	d ₄	d ₅
method																				
Lecture													\checkmark		\checkmark					
Tutorial	J								J							J				
session	Ň	v	v	v	v	v	v	v	v	v	v	v	v	v	v	v	v	v	v	v
discussion																				
problem	\checkmark	\checkmark	\checkmark						\checkmark				\checkmark	\checkmark	\checkmark	\checkmark				\checkmark
solving																				

Head of Department:

Course Coordinators: Dr. Hanaa Abulmagd & Dr. Mohamed Magdy